If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2-47=0
a = 36; b = 0; c = -47;
Δ = b2-4ac
Δ = 02-4·36·(-47)
Δ = 6768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6768}=\sqrt{144*47}=\sqrt{144}*\sqrt{47}=12\sqrt{47}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{47}}{2*36}=\frac{0-12\sqrt{47}}{72} =-\frac{12\sqrt{47}}{72} =-\frac{\sqrt{47}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{47}}{2*36}=\frac{0+12\sqrt{47}}{72} =\frac{12\sqrt{47}}{72} =\frac{\sqrt{47}}{6} $
| 7-4v=3 | | 6u-4u=14 | | 9k-8k=13 | | (9x+2)=61 | | 14x+8=21x+2 | | -3a+14+8a=5a-7a | | |6x|+9=12 | | 6h-2h=8 | | 86+2+6x=x+64 | | 56-(3c+4)=4(c | | 14r-11r=12 | | B=C+C(R)(t) | | 6=4.67+0.3y | | −3.2f =0.01 | | 7x+75=156 | | 2+x-4x=-34 | | -8/7=-5v | | 2(3x=11)=6x+4 | | -31=7x+x-1 | | 29=-4v-3 | | 61=7a-a+1 | | 3y-14=44 | | 5v+8=10v=v+24 | | -3/5u=-3 | | 4a=64 | | -64=8(y-4) | | 6y+8(y-8)=6 | | 5=√2d/4.9 | | 22=-5x+7(x+6) | | 4u+5=13 | | 45=11w-6w | | x-8=12x-36 |